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Optimization of a fuel-cell manifold
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Abstract

A design of fuel-cell manifold to evenly distribute the reactants among the channels within bipolar plates is presented. Neglecting the friction
term from the momentum equation, one-dimensional governing equations are manipulated to develop the manifold equation to achieve the required
design. Some manifold shapes that satisfy the manifold equation, are suggested, together with the distribution of static pressure within the manifold
itself.
© 2005 Elsevier B.V. All rights reserved.
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. Introduction

A fuel-cell stack has a hydraulic network to distribute the
eactants among the component cells. The interface between the
xternal source of reactants and the cell inlet and that between the
ell outlet and the exhaust plumbing are each known generically
s the fuel-cell manifold or header. Two typical configurations
f the fuel-cell manifold, e.g., Z-type and U-type, that provide
ifferent flow directions are shown in Fig. 1. The research to
ate has focused on developing the channel distribution for a
iven manifold design of rectangular cross-section. This study
eported here shows how to change the manifold shape to achieve
n even distribution of reactants among the channels.

. Mathematical model

.1. Z-type

Maharudrayya et al. [1] have proposed an analytical solution
or manifold flow with a uniform cross-section. In the work
resented here, the manifold is allowed to change its cross-

reactants while the lower manifold collects them after they have
passed through the channels. The governing equations for the
manifold flow, including the area change, can be written as fol-
lows:

Upper manifold

d(bh1V1)

dx1
= −N

L
AcVc (1)

d(ρbh1V
2
1 )

dx1
= −d(P1bh1)

dx1
− fρV 2

1 (b + h1) (2)

Lower manifold

d(bh2V2)

dx2
= N

L
AcVc (3)

d(ρbh2V
2
2 )

dx2
= −d(P2bh2)

dx2
− fρV 2

2 (b + h2) (4)

For convenience, the inlet of the upper manifold is aligned with

ection so as to achieve even distribution among the channels.

schematic diagram of the proposed system and its key dimen-
ions are given in Fig. 2. The upper manifold provides the

the first channel and the outlet of the lower manifold with the
last channel. The consumption of mass by the electrochemical
reaction is assumed not to affect the channel flow. The pressure
gradient and flow velocity is given by:
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1 − P2 ≡ �P12 = H
1

2
ρV 2

c , where H = 4fLc

Dc
(5)
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Nomenclature

A cross-sectional area
b manifold width
D hydraulic diameter
f friction factor
h manifold height
H loss coefficient
L manifold length
M flow parameter defined in Eqs. (8) and (9)
N number of channels
P static pressure
q flow rate per unit width of manifold
Re Reynolds number
V velocity magnitude
W channel width
x co-ordinate along the manifold

Greek letters
α manifold height ratio
β manifold height ratio
γ manifold height ratio
� difference operator
Θ non-dimensionalized channel pressure drop
µ viscosity
Π non-dimensionalized dynamic pressure
ρ density
Ω channel pressure drop

Subscripts
1 upper manifold
2 lower manifold
c channel

Vc = �P12
D2

c

2µLc(Ref )c
, where (Ref )c

= 13.84 + 10.38 exp

(
−3.4bc

Wc

)
(6)

The pressure gradient is established within each manifold due to
the inertia change and the friction with the wall. The inertia and

Fig. 2. Schematic diagram of manifold shape with key dimensions: (a) upper
manifold; (b) lower manifold.

the friction term can be compared in terms of order of magnitude
by:

friction term

inertia term
∼ fρV 2(b + h)

�(ρbhV 2)/�x
= O

(
2fL

Dh

)
(7)

Since the friction factor for turbulent tube flow is below 0.01, the
friction term becomes non-negligible if the hydraulic diameter
of the manifold is reduced to below 2% of its length. In this study,
the manifold is assumed to have a cross-section of moderate size
so as to cause negligible friction. With the introduction of this
assumption, the momentum equation can be simplified to:

Upper manifold:

ρ
q2

1

h1
+ P1h1 = const ≡ M1 (8)

Lower manifold:

ρ
q2

2

h2
+ P2h2 = const ≡ M2 (9)

To facilitate the manipulation, the main variable was changed
from the velocity to the flow rate per unit width, q. Eqs. (8) and
(

Fig. 1. Fuel-cell manifold: (
9) are used to calculate the driving force at the channel or the

a) Z-type; (b) U-type.
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pressure difference between the upper and lower manifolds:

�P12 = M1

h1
− M2

h2
− ρ

(
q2

1

h2
1

− q2
2

h2
2

)
(10)

The continuity equations at both manifolds give rise to the fol-
lowing expression that greatly simplifies the calculation:

q1 + q2 = const ≡ q (11)

The flow rate q has the value of q1 at the inlet of the upper
manifold or at x = 0 since q2 is zero there. Using Eqs. (6) and
(10), Eq. (1) can be written in terms of a single unknown variable
q1 if M1 and M2 are known, i.e.:

dq1

dx
= − N

bL

D2
cAc

2µLc(Ref )c

×
[

M1

h1
− M2

h2
− ρ

(
q2

1

h2
1

− (q − q1)2

h2
2

)]
(12)

It is worthwhile nothing that q1 and P1 are not given simulta-
neously as input for the simulation. Hence, instead of using Eq.
(8) directly to determine M1, it has been decided to employ the
pressure difference at the end of the upper manifold (or at x = L)
and the reference pressure at the lower manifold, i.e.:

M

S
c
b
w
u

M

2

c
d
t
t

Since the momentum equation does not change, Eq. (10) can
still be used to represent the pressure difference between two
manifolds of U-type configuration. The continuity equation pro-
duces a different relationship between the q1 and q2 flow rates,
i.e.:

q1 = q2 ≡ q̃ (19)

Using Eqs. (6) and (10), Eq. (15) can be written in terms of
single unknown variable q̃ when M1 and M2 are known, i.e.:

dq̃

dx
= − N

bL

D2
cAc

2µLc(Ref )c

[
M1

h1
− M2

h2
− ρq̃2

(
1

h2
1

− 1

h2
2

)]
(20)

M1 and M2 are calculated in different way from Eqs. (13) and
(14), since in the outlet of the lower manifold the static pressure
is now located at x = 0. Thus:

M1 = ρ
q2

h1,x=0
+ h1,x=0(Pamb + (�P12)x=0) (21)

M2 = ρ
q2

h2,x=0
+ h2,x=0Pamb (22)

3. Optimization of manifold shape
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c

1 = h1,x=L(Pamb + (�P12)x=L) (13)

ince the pressure difference is usually available after the cal-
ulation, the final solution is obtained after the iteration. M2 can
e calculated from q2 and P2 at the outlet of the lower manifold
here these two parameters are the flow rate at the inlet of the
pper manifold and the ambient pressure, respectively:

2 = ρ
q2

h2,x=L

+ Pambh2,x=L (14)

.2. U-type manifold

A similar formulation to that above is possible for the U-type
onfiguration, it is necessary only to make a slight modification
ue to the flow direction at the lower manifold. For convenience,
he inlet and the outlet are aligned with the first channel from
he left in Fig. 1.

Upper manifold:

dq1

dx1
= − N

bL
AcVc (15)

ρ
q2

1

h1
+ P1h1 = const ≡ M1 (16)

Lower manifold:

dq2

dx2
= − N

bL
AcVc (17)

ρ
q2

2

h2
+ P2h2 = const ≡ M2 (18)
A main goal in the design of a manifold is to distribute the
eactants among the channels as even as possible with a moderate
ize of manifold. As the manifold size increases, it will certainly
mprove the distribution but will become useless from a prac-
ical point of view. By contrast, if its size becomes too small,
he pressure drop will be raised and the system will require an
neconomical air blower for the distribution of reactants among
he channels. In this section, the manifold shape is optimized to
chieve the best compromise in size.

If the manifold is designed to distribute the same amount of
eactant among each channel, then the channel velocity and the
ow rate through the manifold can be written as:

c = qb

NAc
, q1 = q

(
1 − x

L

)
(23)

sing Eq. (6), the pressure drop in the channel is determined
ithout iteration as:

P12 = 2µLc(Ref )c

D2
c

qb

NAc
≡ Ω (24)

.1. Z-type configuration

Substituting Eq. (23) for q1 in Eq. (12) yields:

M1

h1
− M2

h2
− ρq2

(
(1 − x̄)2

h2
1

− x̄2

h2
2

)
= Ω, where x̄ = x

L

(25)

he manifold length L was used to normalize the stream-wise
o-ordinate. Rearrangement of the terms after substitution of M1
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Fig. 3. Profile of lower manifold for h1(x) = const and normalized static pressure
at upper manifold (Z-type).

and M2 in Eqs. (13) and (14) using Eq. (24) gives:

h1,x̄=1

h1
(Ω + Pamb) − h2,x̄=1

h2

(
ρ

q2

h2
2,x̄=1

+ Pamb

)

−ρq2

(
(1 − x̄)2

h2
1

− x̄2

h2
2

)
= Ω (26)

The various combinations of h1 and h2 that satisfy Eq. (26) will
render an even distribution among the channels. From the defi-
nition of M1, the static pressure at the upper manifold becomes:

P1 = h1,x̄=1

h1
(Pamb + Ω) − ρ

q2

h2
1

(1 − x̄)2 (27)

3.1.1. h1(x) = const
To find the specific design that satisfies Eq. (26), the special

case is assumed in which the height of the upper manifold is
maintained at a constant value. Then:

h2,x̄=1 = αh1,
ρq2

Pambh
2
2,x̄=1

≡ Π,

Ω

Pamb
≡ Θ,

h2

h2,x̄=1
≡ h̄2,

(1 − α2Π(1 − x̄)2)h̄2
2 − (Π + 1)h̄2 + Πx̄2 = 0 (28)
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Fig. 4. Profile of upper manifold for h2(x) = const and normalized static pressure
at upper manifold (Z-type).

reduced inertia. The size of the arrow drawn downward between
two curves, i.e., the channel pressure drop (Ω), is shown to be
constant along the manifold co-ordinate x. To achieve even dis-
tribution for the upper manifold with a uniform cross-section,
the lower manifold was modified to have its cross-sectional area
decreasing along the co-ordinate. If α decreases or the size of
the lower manifold is reduced, the required variation in shape
becomes large in order to provide an even distribution. If the
number of channels or their area is changed, the scaling vari-
ables can be used to rescale the manifold.

3.1.2. h2(x) = const
In this case, the lower manifold has a uniform area while the

upper manifold is allowed to change its cross-section to enable
the channel distribution to be even, i.e.:

h1,x̄=1 = h2

β
,

ρq2

Pambh
2
2

≡ Π,

Ω

Pamb
≡ Θ,

h1

h1,x̄=1
≡ h̄1,

(1 + Θ + Π(1 − x̄2))h̄2
1 − (1 + Θ)h̄1 + β2Π(1 − x̄)2 = 0

(30)

In this relationship, the scaling variables are defined as: (i) β

is the ratio between the heights of both manifolds based on the
h
t
f
m

P

T
a
u
a
l

uring the derivation of Eq. (28), three scaling variables are
uggested: (i) α is the ratio between the heights of both manifolds
ased on the height at the exit of the lower manifold; (ii) Π is
he ratio of dynamic pressure to static pressure at the outlet of
he lower manifold; (iii) Θ is the pressure drop in the channel
ormalized with respect to ambient pressure.

The static pressure at the upper manifold, normalized to ambi-
nt pressure, is:

¯ 1 = 1 + Θ − α2Π(1 − x̄)2 (29)

he height profile and the static pressure for various α values are
lotted in Fig. 3 with h1 fixed. The static pressure increases along
he manifold co-ordinate x to maintain force balance with the
eight at the inlet of the upper manifold; (ii) Π and Θ have
he same physical meaning as in Section 3.1.1, but with a dif-
erent length scale. The normalized static pressure at the upper
anifold is:

¯ 1 = 1

h̄1
(1 + Θ) − 1

h̄2
1

β2Π(1 − x̄)2 = 1 + Θ + Π(1 − x̄2)

(31)

he static pressure decreases along the manifold co-ordinate x,
s shown in Fig. 4. This may be attributed to the fact that the
pper manifold is designed to have the cross-section increasing
long the x co-ordinate and the exit of the lower manifold is
ocated at x = L. As will be shown later, the shape of manifold
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exerts less influence on the distribution of static pressure in a
U-type configuration where the exit is located in the same co-
ordinate with the inlet at x = 0. The shape of the upper manifold
is consistent with that of the lower manifold in Section 3.1.1
because of the symmetry.

3.1.3. h1(x) = h2(L − x)
A symmetrical manifold design h1(x) = h2(L − x) is an obvi-

ous consideration given the location of the inlet and the outlet.
Introducing the new co-ordinate x̄′ = 1 − x̄ and using the rela-
tions h1(x̄′) = h2(1 − x̄′) and h2(x̄′) = h1(1 − x̄′), Eq. (26) can
be rewritten after dropping the prime notation as:

h1,x̄=1

h2(x̄)
(Ω + Pamb) − h2,x̄=1

h1(x̄)

(
ρ

q2

h2
2,x̄=1

+ Pamb

)

− ρq2

(
x̄2

h2(x̄)2 − (1 − x̄)2

h1(x̄)2

)
= Ω (32)

Eq. (26) and (32) are added to produce:

h1,x̄=1

h1,x̄=0
≡ γ,

ρq2

Pambh
2
1,x̄=0

≡ Π,
Ω

Pamb
≡ Θ,

h1

h
≡ h̄1,

1

h̄ (x̄)
+ 1

h̄ (1 − x̄)
= γ + 1

γ
,
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Fig. 5. Profile of manifold shape for h1(x) = h2(L − x) and normalized static
pressure at upper manifold (Z-type).

most, is second order for either h1 or h2.

h1,x̄=0

h1

(
ρ

q2

h2
1,x̄=0

+ Pamb + Ω

)

−h2,x̄=0

h2

(
ρ

q2

h2
2,x̄=0

+ Pamb

)

−ρq2(1 − x̄)2
(

1

h2
1

− 1

h2
2

)
= Ω (37)

From the definition of M1, the static pressure at the upper man-
ifold is:

P1 = h1,x=0

h1
(Pamb + Ω) + ρq2

h2
1

(
h1

h1,x=0
− (1 − x̄)2

)
(38)

3.2.1. h1(x) = const
The first case to be explored for the U-type configuration

is the upper manifold with a uniform cross-section. The cross-
section of the lower manifold is changed so that there is an even
distribution among the channels. During the derivation, scaling
variables α, Π and Θ are defined as in the previous section for
Z-type configuration with h2,x̄=1 replaced by h2,x̄=0, i.e.:

h2,x̄=0 = αh1,
ρq2

2 ≡ Π,

T
t
m
t
b
t
e
t

1,x̄=0 1 1

where γ = Θ + Π +
√

(Θ + Π)2 + 4(Θ + 1)(Π + 1)

2(Θ + 1)
(33)

q. (33) provides many choices in the design of the manifold
hape with simpler form than Eq. (26). A profile such as h̄1(x̄) =
Ax̄ + B)−1 can be used with the coefficients being determined
y the substitution to produce:

¯ 1(x̄) = γ

(1 − γ)x̄ + γ
(34)

he normalized static pressure at the upper manifold is:

¯ 1 = γ

h̄1
(1 + Θ) − 1

h̄2
1

Π(1 − x̄)2 (35)

he profile of Eq. (34) together with the accompanying static
ressure are shown in Fig. 5. The static pressure rises and falls
long the co-ordinate x while the height of the manifold increases
ontinuously.

.2. U-type

For a U-type manifold, Eq. (23) is substituted for q̃ in Eq.
20) to produce:

M1

h1
− M2

h2
− ρq2(1 − x̄)2

(
1

h2
1

− 1

h2
2

)
= Ω (36)

earranging terms after the substitution of Eqs. (21) and (22)
or M1 and M2 yields the second order manifold equation for
-type. This equation appears to be very complicated but, at
Pambh2,x̄=0

Ω

Pamb
≡ Θ,

h2

h2,x̄=0
≡ h̄2,

[1 + α2Π(2x̄ − x̄2)]h̄2
2 − (Π + 1)h̄2 + Π(1 − x̄)2 = 0 (39)

he profiles of the lower manifold for changes in the parame-
er α from 0.5 to 2.0 are given in Fig. 6. For α = 1.0, the lower

anifold with a uniform cross-section gives rise to an even dis-
ribution among the channels. Though this is the result obtained
y neglecting the friction at the wall, it still reports that the U-
ype is more efficient than Z-type configuration in producing an
ven distribution. Unlike the Z-type, a lower manifold of the U-
ype is required to have an increasing or decreasing cross-section
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Fig. 6. Profile of lower manifold for h1(x) = const and normalized static pressure
at upper manifold (U-type).

in the direction of x depending on its size, i.e.:

P̄1 = 1 + Θ + α2Π(2x̄ − x̄2) (40)

The static pressure increases continuously along the co-ordinate
x regardless of the manifold shape. The Z-type manifold could
have an increasing or decreasing profile of static pressure
depending on its size and design. By contrast, the static pressure
of the U-type manifold is not sensitive to the manifold shape but
is changed by the loss or the gain of the inertia.

3.2.2. h2(x) = const
The next case of constant h2 also suggests scaling variables β,

Π and Θ. The physical meaning of each variable is the same as
that discussed above for the Z-type manifold (see Section 3.1.1),
i.e.:

h1,x̄=0 = h2

β
,

ρq2

Pambh
2
2

≡ Π,

Ω

Pamb
≡ Θ,

h1

h1,x̄=0
≡ h̄1,

(1 + Θ + Π(2x̄ − x̄2))h̄2
1 − (1 + Θ + β2Π)h̄1

+ β2Π(1 − x̄)2 = 0 (41)

This case produces the same profile for the manifold shape as
that shown in Fig. 6 if α is replaced by 1/β, which is expected
from the symmetry:

P̄1 = 1

h̄1
(1 + Θ + β2Π) − 1

h̄2
1

β2Π(1 − x̄)2

= 1 + Θ + Π(2x̄ − x̄2) (42)

3.2.3. h1(x) = h2(x)
The relationship h1(x) = h2(x) = const is the only solution

to satisfy the condition h1(x) = h2(x). The situation where of
α = 1.0 in Section 3.2.1 corresponds to this case as shown by
the data in Fig. 6, i.e.:

P̄1 = 1 + Θ + Π(2x̄ − x̄2) (43)

4. Conclusions

A method has been developed for designing fuel-cell man-
ifolds to distribute the reactants among the channels within
bipolar plates. Expressions for the manifold height have been
derived for Z-type and U-type configurations after neglecting
t
r
s
e
c
a
s
d
a

R

[

he friction term. Criteria for determining the validity of the cur-
ent model are also proposed. Some cases are explored to find the
pecific design that satisfies the derived manifold equation for
ach configuration. The static pressure within each manifold is
alculated and can be used to estimate the pressure requirement
t the inlet to drive the specific flow rate. During such derivation,
caling variables are defined and are based on the operating con-
itions as well as on the geometric configurations of the channel
nd the manifold.
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